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Differential properties of the solution can be studied by utilizing the results obtained. 
Lemma 4.3 assures an a proximate solution of (3.10) according to theorems in fs] on 

the convergence of the Ga erkin method, and of other projection methods. f 
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We consider systems with quasic clic coordinates and analyze the motions in which 
velocities, im K ut not quasicyclic) coordinates are periodic funct- 
ions of time. K 

ulses and position ( 
e assume that the generalized forces corresponding to quasicyclic coor- 

dinates either depend on time only, or are proportional to quasicyclic generalized co- 
ordinates and rhat the latter are small. 

We show that, when certain requirements are imposed on the nonpotential forces with 
reference to the position coordinates in stable motions, then the quasicyclic impulses 
assume (u 
tion A 0 P 

to the small order terms) mean values yielding the minimum of some func- 
these mean values, This function can be expressed in terms of the Routi’s 

kineti: potential of the system, by the virial describing the forces acting upon the pcsi- 
tion subsystem by me quasicyclic subsystem, etc. This in turn yields various versions 
of the integral criterion of stability. 

Applying this criterion to the case of the oscillations of linear c~rent-carrying con- 
ductors, we can relate mean periodic values of the ma 
conditions of the combination of the averaged values o B 

netic fluxes to the extremal 
the magnetic field ener 

magnetization energy and of the mechanical kinetic potential (or the virial of 4 
y, 

deromotive forces). 
e pon- 

The case when the Routh’s equations are linear with respect to the position coordina- 
tes is considered separately, and we refer back to our previous papers on the problems 
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on excitation of oscillations I’**1 to anal 
P 

ze the possibility of representing the condi- 
tions of existence and stability in terms o the harmonic coefficients of action of an 
oscillating system, and to give specific expressions for h. 

We thus find that the systems in question constitute a second class of systems admitt- 
ing the integral criterion. Earlier, Blekhman e.a. I**] studied the systems of synchro- 
nizable objects with weak constraints. Differences occurring between these two classes 
are related to the form of the Lagrangian and of the generalized forces as well as to the 
assumptions on smallness. This -leads to different formulations of the criterion. In par- 
titular, system with quasicyclic coordinates, unlike the synchruuizable systems, can 
admit the integral criterion also when considerable dissipation occurs over the position 
coordinates, 

1, Psrlodlc motions fn l $yrtsm with qurticyclic coordinrtet (‘) 
rnd the lntsgrrl criterion of atability, Let a system with holonomic 
steady constrains be given described by m quasicyclic (qs,.,.,q,) and n - q posi- 
rion ( Qm+lr***tQ 1 n coordinates, and let the generalized forces corresponding to the 
quasicy+ic coorainates be of two kinds: (1) de 
to the quasicyclic generalized velocities. We s g 

endent on time only, or (2) proportional 
all limit ourselves to the case when the 

forces of the kind (1) are 2n / o periodic and the forces of the kind (2) are small. 
Consider the motions in which all generalized velocities and impulses as well as the 
position (but not quasicyclic) coordinates are &I / w periodic in time. Equations of 
motion will then be 

Pr’ + fwr* = ur (9 f Pfr (r=i,. . .,m) 

d aL aL ----=Q (r=l,,..,n-m) 
dt aq,,, %n+r m++ (W 

where L is the kinetic potential of the system, P,(r =i e-*-d denote quasicyclic 
impulses, p is a small parameter and Q,+, (Qm+l,e.stqn* Q’~,...,Q’~) are nonpoten- 
tial generalized forces corresponding to the position coordinates. 

The most interesting case occurs when “quasicyclic” generalized forces of the second 
kind are the viscous friction forces and when pih, > 0. A more general case when these 
forces are given in terms of a dissipative function of the form 

with a positive definite form in its right side can, obviously, be reduced to the previous 
case by the linear substitution of the quasicyclic coordinates only. 

For sufficiently small fi , system (1.1) can have solutions of the type shown above, 
and they will become solutions of the corresponding generating system when p = () 
only under the condition that 

(1.3) 

*) Following IS], ch. 7, we shall call the coordinates quasicyclic, if they do not a 
c!. in the expressions for the kinetic energy and generalized forces, arid the correspon 

pear 
mg 

generalized forces are different from zero. 
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which will, from now on, be assumed; 1, in (1.1) can be assumed constant without 
loss of generali 

r* If from me fo lowing linear algebraic equations in g’, (r = l,...,m) 

or = aT I &ir 
we find 

4r ‘=gr@l 
. 

s.--fiPrnt 4m+i8 - 0 -8 !?a, %+I, V. .t !?n’) 

and construct the Routh’s kinetic potential 

(1.4) 

W) 

Lta =[T-- ;*PArq$/-I (W 

then using (I. 5) we re 
P 

lace 
can be written in the orm 

qr in the expression for Qm+r , the equations of motion 

(t=i,. .., m) 

d ah aLR 
----=Q p=i,...,n-mm) 
dt aqm+r aqm+t 

mtr (W 

containing only the position coordinates, quasicyclic impulses and their derivatives. 
For p = 0 we obtain from (1.7) a system of m equations in quasicyclic impulses 

Pto’ =u,(t) (r=i,...,m) 

admitting a family of 2s1 / o periodic solutions 

(1.8) 

pto=a,+V,(t) (r=l,...,m) (1.9) 

with m arbitrary constants a,,...~$,,. In (1.9) we have 

Vr’ = u,, wr,> = 0 (1.10) 

We assume that the equations 

d aLR aLR 
-v--- - Qmtr 
dt aq,,, aqmtr 1 =0 (r=i,...,n-mm) (1.11) 

P,‘Pro 

for any al,...,a, belonging to some region, admit a stable 2n/ 01 periodic isolated 
solution (i.e. solution without any new constants) 

9 - 9r+m0 (& at. . . . , ocm) r+m - (r=l,...,n-mm) (1.12) 

Then the equations defining the parameters of the generating solution will be 

pr(al,. . ., a+-<-y)o-er=o (r=i,...,m) (1.13) 

The mode corresponding to the solution CC1 = at*, . . . ,a, = am* of (1.13) when p 
is sufficiently small will be stable, if the roots J,r,.,.X, of the equation 



tntegrat criterion of rubillty for ryrrems wlsb quaslcyclic coordinates 79 

(1.14) 

have real parts which are negative when p > 0 ‘and positive when tr < 0. We 
assume that cQ*,...,CZ,* belong to the domain of existence of (1.12). 

In (1.13)) (1. I-4) and further, the subscript zero will denote the subatimtion PP = 
- pm, Yr*m = %+=o; the asterisk - the substitution CCt ~=@~,...,a, =a*& 

e, - t, l4, x, = V h,, and a,* will denote the Kronecker delra. 
Next we shall find the conditions for 

(1.1.5) 

to hold. Integrating by parts, we obtain 

From (1. ‘7) it follows that (1.15) hold when 

n-m 

2 <Q mtDo-* F=‘O > (r-i,.,, . .,m) 
Pl 

(1.17) 

Equations (1.17) imply that the manix II@, / 8% 11 Is symmetric. Let us limit 
ourselves to the case when the quasicyclic generalized forces of the second kind are 
the viscous friction forces, assuming also that p> 0 and h,> 0 (r = f,..,m), 
We shall, in addition, use the followina fact. 

Let the N X N matrices A and B be svmmetric and let B be positive definite. 
Let also kr < Xa Q . ..< AN and &’ < 5’ < . ..< IN’ be the roots of the equa- 
tions IA -. A&I = 0 and IA - A’BI = 0 respectively, where J!? is a unit 
N x jv matrix. Then il, and 1, * have me same sign. 

Since all X, > 0, the matrix diag (~1 ,...,I&) is positive definite and, when 
11 aP, / (3a, 11 is symmetric, the stability will depend on the signs of the roots 

A,‘,.“& t of the equation 

det J (88 t %), f J& I= 0 (i.i8) 

Moreover, tire point ~czt*,...,a,* ) will be a stationary point of the funcdon 

therefore the mode corresponding to the values ax = ~$*,,..,a~ =a,* will be sta- 
ble, if the above-mentioned point is a minimum. 

The latter statement forms a basis for the inte 
of systems under consideration. The criterion w 1 

ral criterion of stability for the class 
1 certainly hold, if all generalized 

forces written in terms of the position coordinates are potential forces. It is neverthe 
less true, that the integral criterion may hold also when nonpotential generalized forces 
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Q,+# are present. 
Let e.g. Q,,,+* be expressed as linear forms of the p~i~on.velociti~ 

n--m 

Q mir q 2 br,‘l’m+r (a=i,..., n-m) (1.W 
+=1 

and gm+ra be represented by series of the form 

where the phase shifts CPU of the harmonic components of qmtro are independent of 
a,, , , ,, g, and are identical for all q,,,+lo,. . ., qna. Then 

n-m 

2 <Q 
10-l 

m,~+>=njj-~ b,,<--&w$?+,,,X 
r-1 :r-1 Y 

x sin (vat 
8q(“) -q~)~+ff!?eos(Wt- cp,)>=O (r=C *-** fi-ml @*22) 

v r 

When all components in the Fourier expansion of a function exhibit the same phase 
shift, we shall say mat this fun;yon is compT?nt-wise phase-coupled and we shall 
call the conditions that Tm,ro ” =. . .=‘pns ” - qV - the conditions of the component- 
wise phase-coupling. We can now say that the sufticient condition for the integral 
criterion to exist when Qm+, are linear forms of q’mrlt 9 + ., qnn’ is, that the phase 
shifts in the expansions of the position coordinates computed for the generatin approxi- 
mation are independent of the parameters of the generating solution and that & ese 
coordinates satisfy the condition of the component-wise phase coupling. Since no con- 
straints of any sort are imposed on the properties of the matrix IlbJ, it follows that the 
integral criterion exists in the case when Q m+@ represent the viscous friction forces. 

The case which we have just discussed has no analog in the problems onsynchroniza- 
tion, since in the latter case Ql, . . ., $t,,, represent the phase shifts of the object coor- 
dinates PI , expressions (uf +a,, and ‘Rn+ra(“) appearing in the solutions mogt cert- 
ainly depend on aI, a . ., h and the integral criterion is possible only in the absence 
of dissipation in the supporting (oscillating) system [*a]. 

The equation 

LR=Ts-II--TT,=L,-T, (1.23) 

where Tt and, Ts are given by 

T=T1+T,+U (1.24) 

r, I==1 

n-m m n--m 

Tar= f t) Am+rm+r&+r&+r, u = C x Arm+oq,'q'm+u 
'r, 8-t. r-l r-1 

enables us to obtain A in a more definite form 
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which will be preserved in the case when the left parts in (1.17) are equal to b,, and 
are independent of at,...,@,. At the same time e, in (1.25) should be replaced with 
e,- b, (see Sect. 3). 

Two remarks which follow refer to the practical applications in connection with the 
problems on excitation of mechanical oscillations. 

The generating approximation and the formulation of the integral criterion are not 
affected by the addition of any terms of the form p ( ) to the first m equations of 
(1.1) and of any terms of the order ~1 to the remaining n - m equations. The form 
of (LR je as a function of Cc r,. ..,a,,, remains the same even when new degrees of free- 
dom ap 

P 
ear corresponding to the group of coordinates Qn+l,...,Qn+z such that the exp- 

ression or the kinetic energy becomes 

m n-m 

&tlr’rle’, u = tl z: Am+rtlr’q?kr (1.26) 
t, S==l @-=a p=1 

Coefficients of the forms T, and U depend only on Qm+lt***,Qn and T, is given 
in (1.24) 

(u$t = const) (1.27) 

We assume that the generalized forces in ~~~r,...,Q~+l are independent of the rem- 
aining generalized coordinates and velocities and that the forces are 2rt / o periodic in 
time, which appears in the formulas explicitly. 

To clarify the form of the corresponding Routh’s equations, we shall write the kinetic 
energy as 

T = T,(l) + U1, + T,, + U(l) + U, + T, + Ts 

where 
m m n-m 

m m n-m 

m 

Tl*=T I 2 ~L~r;g;rc q+* = rlr - qr (r = I, . . ., m) (1.29) 
r, P=l 

We have 

Qr’ = g, - 9r; (P.--rl,..,,m) (1.30) 

where g, are functions of Ps,..., Pm, Qm+lt...nQnt *q’m+l,e.+tq’n, are given by (1.5). 
The form ofgrremains the same as that for the system without additional coordinates. 
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Routh’s kinetic potential will be given by 

LR = --T,(l) + T,. + U, + T. + T, - I-I (1.31) 

Performing the substitution according to (1.30) for ger (r = I,.. .,m) in T,(r) and 
using the identity 

fi Armr, + i nf &n+d.qt;l+r = $j prg;, 
r, r=1 r=1 a-1 r=l 

(1.32) 

we obtain 

(1.33) 

where L(9)n is the Routh’s kinetic potential for the system without additional coordi- 
nates. We therefore see that generating equations for pt,! ..$m and Qm+t, l --tqn 

obtained from (1.7) have the same form and the same solutions as those for the system 
without additional coordinates. Equations corresponding to the additional coordinates 
will be 

m 
d aT aT 

- L - 2 = - 2 w,tpp’ + Qn+i 
dt a9,+, a9n+, 

(i = I ,!. .y_, 1) (I.341 
r-1 

(these equations could have been written down at once as the Lagrange s equations). 
System (1.34) contains no a,,...,& m 
that when the substitution psr = u, 

in its generating approximation. We assume 
is performed, then the system will admit an 

isolated stable solution in which g’n+ro,...,g’n+ro are 2n/ o periodic functions of 
time. Then the equations defining a,,,..,a,,, and the conditions of stability will 
differ from those occurring in the system without additional coordinates only in the 
values of e, which will become 

e * = e, + 2 ~o,t (qi+;,td r 

i=l 
(‘.=I 

Although Ts is a si 
only, the above remar a 

n definite form of quasicyclic and supplementary velocities 
has a definite physical sense (see Sect. 2). 

The above results can be extended to rotational motions when 9,,,+, = ot + 2n i o- 
periodic function for certain position coordinates. At the same time, functions 
‘I’, II and o,,,+, should be I&r/o periodic in the corresponding q,,,+, or contain only 
their differences qm+,. - q,,,,,. 

Let us also consider the case when L, corresponds to a linear system. Then Routh’s 
equations over the position coordinates will be 

Mu” + Cu = Q + P, p=-Jg (1-W 

where u = (qm+l ,..., g,), Q = ( Qm+t ,..., QJ ; M and C are symmetric 

(n - m) x (n - m) matrices with constant components. Denoting the scalar pro- 
ducts by brackets, we obtain 

L, = I/, (Mu’, u’) - l/a vu, 4 (1.37) 
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Let us scalar multiply both parts of the equation (1.36) written in il generating 
approximation by @I / aa, and average the result over one period, Assuming that 
(1.17) holds, we obtain 

4 ML~O 9 $)> +<(% e]> = ((F,, $)> (1.38) 

On the other hand, differentiating both parts of the same equation with respect to 
a,, scalar multiplying the result by us and averaging, we find 

<( M%* q>+<p+ uo)> = (($2 1 h)) +<& %I)) (1.39) 

Since the matrices M and c are symmeuic, 
of (1.38) and (1.39) yields 

integration by parts of the first terms 

<PO, 2)) = &<(Qov w + <( 2 9 +- 

- & G)o = <( Fo, 2)) (1.40) 

from which we obtain 

(1.41) 

where WQ and W, are the virials of the nonpotential forces corresponding to other 
position coordinates and of the forces of action of the “quasicyclic suhystem” on the 
“position” (oscillating) subsystem. These virials are defined by 

wQ = -<to, U)>, WF =- ((F, U)) (1.42) 

Relations (1.41) enable us to eliminate,in the given case , (La)0 from the expression 
for A 

A = ( Tl>o - llr”4, - %WP, --2A (1.43) 

If Qm+w..,Qn are linear forms of Q’ m+l,...tq’n and Qm+ro,..*,qno are component- 
wise phase-coupled and phase independent of a,,.,.,a, , then ri/90 = 0, (1.17) 
holds and 

A = (T,), - ‘laWp,--2A (1.44) 

Equations WQ. = 0 and (1.17) hold in certain other cases (see Sect. 3). Repre- 

sentations of A in the form (1.44) which are possible in the problems on the excitation 
of oscillations, yield the following. Let u and Qlg... v4m be coordinates of the oscilla- 
ting system and of the exciters [I, 21. In (1.24) we have 

T, = T, (E, 4’1s--*vq’rn), u = u 6, E’, 4'1,...#Q'rn) 

E = (El, * .., M, Ej=(U, uj) (j=l,...,k) (1.45) 
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where &IV..*V~ L are the feedback parameters [I,‘] and uj are constant (n - m) - 
vectors. The form of T, and U doe.s not depend on the form of the oscillatory system 

[t] (i. e. on the number of its degrees of freedom, on the manner of introduction of the 
coordinates U etc. ; these factors only define the form of t+). This gives 

(1.46) 

Consequently, when A is defined by (1.44), the form of the averaged functions of 

&. E’, and pl,..,pm will not depend on the form of the oscillating system. 

2. Energy relation: for the CLIC of oscillation of the Current- 
crrrylng conductors. Let a solid body system be given, incorporating m linear 
conductors to which known external 2n / o -periodic emf’s are applied. We shall con- 
sider the case when the electric field energy outside the conductors can be neglected 
and the magnetic field can be assumed quasi-stationary [ 71 within the range of frequen- 
cies given by a,..., V*O, where V* is sufficiently large. (In general, the arguments 
which follow are valid only to within the high frequency “tails” of the functions to be 
determined, beginning with some harmonic frequency v* + 1, This is connected with 
the fact that the dynamic effects in the material are neglected e.a. ). We assume that 
the relationship between B and H in the material is linear and that the resistances 
of the conductors are small compared with the inductive reactances at the frequency 

0,. 
Since B and H are connected linearly, we can describe the system in terms of 

Lagrangian equations, supplementing the kinetic energy with the part of the total free 
energy depending on the currents (magnetic field energy) W 

W = + 2 L,,+i,i, (2.1) 
r, 84 

Here L,r* =Lrr* (qm+t,...,q,,) and Lra* ELM* (Qm+tt-**rQn) are coeffi- 
cients of the self- and the mutual induction, L, = qr (P = l,...,m) denote the 
currents in the conductors and qm+tv**-v!? VI are the mechanical generalized coordina- 
tes. Coordinates (charges) Qr are quasicyclic. 

Equations of motion will be 

d & & 
-7--=Qm+r+ Fm+r (r=l,...,n-m) dt aqm+r aqm+r (2.2) 

where 

F m+,=-eW(il,...,im,Pm+l..,.rQ*) 
aqm+r (2.3) 

are the ponderomotive forces and 
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denote the fluxes of magnetic induction across the conductors. 
In (2.2), p& denote the resistances of the conductors; U, and Ir & the alterna- 

ting and direct component of the applied emf, respectively, (the latter should be small 
so that no currents i = 0 (1 / p) are present in the stationary mode). 

Parameters a,, . ..,a, of the generating solution here play the part of the direct 
components of magnetic fluxes computed with the accuracy of up to the small terms 

CD m=ccI.+vp(t) (?-.i,...,rnj (2.5) 

The quantity 

2A== se*, e, =* (2.6) 
V==l 

in this case, is the energy of magnetization and has the following sense, Let all 
U, = 0 and let a comtant flux a, pass through the r-th circuit. Then the current 

in the r-th circuit will be given by i, = e, and the energy of this system of const- 
ant currentr (magnetization currents) in the given field, will be equal to 2A (the 
field is assumed external to the currents, see [‘I, ch. IV, Sect. 32, 32.14). 

Relation (1.25) enables us to formulate the following statement. If nonpotential 
mechanical forces are absent from the system or, if these forces satisfy (1.17) , then 
when a stable periodic motion (*) occurs, 
(with the accuracy of u 

the direct componenor of magnetic fluxes 

I! 
to the small terms) will have such values that the function of 

these components will e a minimum, its value equal to the mean (over one period) 
va!.ue of the magnetic field energy, less the mean (over one period) value of the mecha- 
nical kinetic potential and the energy of magnetization. 

In the case when L, corresponds to a linear oscillating system, the mechanical 
kinetic potential in the integral criterion can be replaced (in accordance with (1.43)) 
with the half-sum of rhe virrais of the nonpotential mechanical and ponderomotive 
forces. 

We shall, in addition, assume that other linear conductors are situated near the ones 
under consideration in such a manner than when a line of magnetic induction envelops 
a “primary” conductor, then it must envelop the whole group of secondar 
situated near the “primary”. We assume that the resistances of the seco d 

conductors 
ary conduct- 

ors are not small (otherwise the currents would be i = 0 (i / p)). Then the charges 
carried across the secondary conductors wiU play the part of the additional coordinates 
in accordance with Sect. 1, and the quantities tl, will be given by 

‘, 
‘1, = 4, + .x w*I!Ij”) (2.7) 

j==l 

l ) More accurately - a motion existing atsufficiently small ~1 and described by a 
solution which becomes the corresponding solution of the generating system when 

Ir- 0 ; moreover, the currents and displacements are periodic in these motions, the 
charges are not. 
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where t, is the number of the secondary conductors situated near the r-th primary, 
1, + . . . + 2, = I, c&@) is the charge which has passed the plane of cross section of 
the j-jth conductor of the r-th group and W,J are rational numbers defined as follows. 
Let the circuit of the r+th primary conductor pass along a certain line no@) times, and 
the circuit of the j@)-th conductor pass n,(‘) times. Then w,j = n/J / nl(Q (in 
practice n,@) denotes the number of turns), 

The effect exerted by these secondary conductors on the motion of the system does 
not depend on the manner of connections made between these conductors, nor on the 
emf applied, nor on the character of other electrical components included in the net- 
work (such as coils, condensers, rectifiers, e.a,). It is indicated in terms of et*’ only, 
the latter replacing e, in (2.6) 

e* r (2.8) 

Since lines of induction enveloping the primary conductor and not the secondary ones 
always exist, the above argument is valid only under the condition that the “difference” 
can be described using terms of the order of p in the expression for W. Then, additio- 
nal terms of the form- I’ ( )’ will appear in the first m equations of (2.2) for the mecha- 
nical coordinates, and they will not alter the generating solution. 

3. Routh’s equrtionr llnerr in porition CooXdInAtAA. Even if L, 
corresponds to a linear system, equations defining the position coordinates in the gene- 
rating approximation will, generally speaking, be still nonlinear, since the forces P 
depend on the position coordinates. Two cases, however, exist in which linear equa- 
tions are obtained, When the constraints are stationary, the Routh’s function 

R = Ln + I-4 has the following suucture 

R =$T(A m+rm+r + Nil+-‘ Qm+r m+a )’ Q’ + 
r. 1-l 

and the forces of action of the quasicyclic system on the position system will be 

(r=i,...,n-m) (3.2) 

Since our aim is to obtain linear equations for the position coordinates in the enera- 
ting approximation, we shall assume that nonpotential forces written in terms o B the 
position coordinates are linear forms of q’mrlr. .., q’,, with constant coefficients. 
From (3.2) it follows that two cases are possible. 
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1. Quasiharmonic generating system. Quasiharmonic equations (i.e. 
linear equations with periodic coefficients) are obtained if N,,,,,; = const (r, S = 
P I,.... 71 - m),. IV,,,, (r = I ,...,: n - m; s = i ,..., m) are sums of const- 
ant quantities and linear forms; A@) (r, s = l,...,m) are sums of constant quanti- 
ties and linear and quadratic forms of the position coordinates. Consrant terms in AW 
do not affect the form of F,, and the second term in the right side of (3.2) vanishes. 
System of tie generating equations will be inhomogeneoU if at least one of the follo- 
wing conditions holds: (a) NrnLrr have cornrant terms or (b) A@*) have linear terms. 
If all N,,,, are linear forms and A@‘) have the form: consrant plus quadratic form, 
the system will be homogeneous. 

At this point we shall turn our attention to one 
P 

articular case. Let the Products of 
the quasicyclic and position velocities be absent rom the expression for kmetic energy 
(II = 0). Then all N,,,, 7 0, and N,,,,,,,, = 0. Let, in addition, A(‘*) ,contain no 
linear terms. Decomposing T, into the energy of the quasicyclic subsystem with Ti* 
restrained, and the “additional energy” AT, 

TI = TI* + ATI, Tl+ = + t gx A?‘) P,P,, ATI = f ; A A(“)p,,p, (3.3) 
. = r. a=1 

where AA are quadratic forms in Qm+rt we obtain 

‘l,W, = AT, (3.4) 

Function A will, at the same time, have the form 

A =,(Tl*>o - ‘It Wq,- 2.4 (3.5) 

If, in addition, WQ,, = 0, then A will assume the form which it has when Qm+lr . . . 
qn ~0, i.e. when the position subsystem is restrained. Consequently, in this case 

the position subsystem does uot (within the accuracy of up to the small terms) influ- 
ence the motion of the quasicyclic subsystem; the motions of the position subsystem, 
however, are substantially de 
the problems on excitation o p” 

ndent on the quasicyclic subsystem. Applying this to 
oscillations we see that it means that the feedback act- 

ion of rhe oscillation on the exciter is insignificant des 
the generatin 

%s 
solutions and the fact that small rerms epending on the position coor- B 

ite the presence of a family of 

dinates are su tantial. 
If T,* = 0 and at least one fr # 0, then no solutions of the type discussed above 

exist. If, on the other hand, all jr = 0, then we arrive at the singalar case of the 
method of small arameten (Pr E 0) in which terms of the order of ps must be taken 
into account in tl! e required solutions. 

2. Generating system with constant coefficients. Equations with 

constant coefficients are obtained if N,,,, = const, N,,,+rm+r = const, and A(“) 
are linear forms of the position coordinates. In this case osition coordinates in the 

! ! 
eneratin approximation are defined from the solution o P the rEep~z p;:‘,“ci; 
lations o a linear system acted upon by the forces which can 

some known function of time and of the parameters a,,...,a,. 
This system, however, will differ from the initial oscillating system (with the kine- 

tic potential &) because of tie terms N mum+rqm +r. Action of the quasicyclic sub- 
system on the position subsystem, within the accuracy of up to small terms, thus consists 
of the following: firstly, it is responsible for 2n/ a- periodic driving force, and secondly, 
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it modifies the masses of the oscillating system. Rigid constraints however are not alt- 
ered and the gyroscopic forces do not appear. 

The most interesting case in the problems on the excitation of mechanical oscillat- 
ions is that which occurs when U = 0 We then have in the generatin 
the problem on the forced oscillations of the initial oscillating system. fi 

approximation 
at the same 

time we can write the expression for T 1 so that it contains the feedback parameters 
(i.e. in the form invariant with respect to the type of the oscillating system I*)‘]), then 
equations defining the parameters of the generating solution and the conditions of sta- 
bility, can be witten so that they contain harmonic coefficients of action of the osci- 
llating system as parameters. If this holds for some exciter, then the oscillations cau- 
sed by this exciter in any linear mechanical system will be fully defined if the coeffi- 
cients of action for this system are found and the relations shown above utilized. Be- 
low we shall determine the form of p, and A for such cases. 

Expression for the Routh’s kinetic potential will be (*) 

m 

LR =:La - f 2 [A;;) + 
r, r=1 

and the corresponding expression for 

Ck 

F = x Fjvj, 
j=l 

the driving forces, 

(3.7) 

Notations in (3.6) and (3.7) correspond to those of (1.45) and (1.46); the number k 
of the feedback parameters and the coefficients of A(ts) and AA,@*) follow from the 
properties of the exciter only. 

Driving forces computed in the generating approximation will be functions of the 

$%ZlEsg (?$‘;Ynto (3.7) 
a, of the generating solution and of time only. They are obtained 

Fj, = - + 5 A Aj(“) ( a+, + %K + W,) (3.8) 
t, a==1 

Let us now bring into consideration, in accordance with It?] , harmonic coefficients 
of the action of the oscillating system k, (tf)and the phase shifts s#V(ri) which are det- 
ermined in the following manner. 

Let the oscillating system be acted upon by a single given load of the form V,COSW~. 

We shall define the resulting pure forced (Zn / vo-periodic) oscillations and find the 
laws governing the behavior of the feedback parameters over a period of time. We 
denote their amplitudes and phase shifts relative to the load by k,(G). and s&(tj) , res- 
pectively , in accordance with 

&j = k,(‘j) COS (VUt - $,(‘j)) (j = i, . **, k) (3.9) 

l ) In a number of cases the form of L, differs from that assumed by the small terms 
responsible for insignificant additions of the order of p to the equations of motion of 
the oscilladng system. Moreover, the term under the summation si 

8 
n in (3.6) should 

represent a positive definite form of quasicyclic impulses. This lea s to the necessity 
of imposing constraints on F;I , of the form Aj< tj <Aj, which, in mast cases, are 
obvious from the physical sense of a given problein. 
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This enables us to obtain in the generating approximation the feedback parameters 
as functions of time and of q,..., dx, , as well as of k,(‘t) and s#,(tj) 

Notation employed corresponds to the equations 

and &JO (r) denotes the parts of &,s independent of ~&.,.,a, and such that 

( &,*(‘j ) = 0. 
substituting file from (3. IO) into 

Q,’ = i [A’:” + i A A:“‘&] P*, (3.13) 
a=1 i-l 

and averaging, we obtain the following algebraic equations defining the parameters 
of the generating solution 

where 

We assume that the nonpotential forces in the coordinates of the oscillating system 
are the viscous friction forces. To find the condition of existence of the integral cri- 
terion, we shall construct the following derivatives: 

(3.16) 



90 K. Sh. Khodzhaev 

Using the reciprocity relationships of the static action coefficienrs k,(‘j) = k&j’) 
and the obvious equalities AA,@‘) = bA j(lr) we can show that the coefficients 

&,,,a remain unaltered if the extreme or middle indices are interchanged and also if 
in the first and second pairs, the indices are simultaneously rearranged: arae = a,,= 

%zVD = QIrw = . . . For example, 

a 6 rmw = - T AAj(‘o’AA,““‘ko’i” = _ L 

&f-t 

2 $ &-+““&I,‘~&,,‘~’ ‘= atrar 

t, j=l 
(3.17) 

Thus the sum in (3.16) is not affected by the interchange of r and a. The same pro- 
perty is possessed by the first two terms in the expression for u,, (3.15). For the last 
term, using the reciprocity properties k,(*f) = k,(f’)and *,@I) = +&ffif and rearran- 
ging the indices i, j and II, u in the appropriate manner, we obtain 

x V,,vk:“) [cos (6,,, - 6,” - $y(*j)) - cos (tie,,- &--~?j))] (r, s =i, . . ., m) (3.18) 

so that +r = 44, if *,Y = 6,~ (U, U = i,...,m). Consequently aPr/8ar = 
= aP,/dct, and P, = &‘L/aa, in the case when the generalized forces of rhe 

first kind are corn onent-wise phase-coupled in the quasicyclic coordinates. 
The same cond P. tron ensures the following equalities 

n-m 

(2 Q m+mv> z <-(I&‘, $)>=br (t=j,.,.,m) (3.49) 
r-1 

Here the symmetric (n - m) X (n - m) matrix B characterizes rhe friction in 
the oscillating system and .b, is independent of art. et I Qma 

Indeed, in this case the driving forces 

F*=-y- i i fJ AAj(“) [<,.~4,+2+ 2 V~~XCOS(V~~- +,,+V,V,] Vi (3.20) 
j-1 r, 1~1 Y, v#0 

generate oscillations of rhe form 

u. = jj u(t) cos @of - 6,) + u$ sin (vat - 6,) + uoB), T&K KBK (3.21) 
Y 

where 6, and u(‘)s are independent of q,...,a, and ~(0)~ is a linear form of c+. 
From this, using (3. I$), we obtain 

With B symmetric matrix, integration by parts yields 

(3.22) 

woo = <-(Bu;, u(J) = ((lw~, UJ} = 0 (3.23) 
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The linearity of AT, in tj yields the following relation between the virial of the 
driving forces and the additional energy of the exciters: 

WF. = (ATdo (3.24) 

and the function A can therefore be written as (see 1.43)) 

A = <Tl* >o + */s (AT,), - &I, A = f 2 g(e, - br) (3.25) 
hl 

or as 

A = VA - l/s <ATJo - 2~ (3.26) 

Two above relations rogether with the most general representation of A in terms of 
the averaged Routh’s kinetic potential 

A = <T,), - (La), - 2~ (3.27) 

yield three formulations of the integral criterion of stability, and two out of four follo- 
wing functions, namely T,, T, * ‘AT, and La. are used in each formulation. , 

Scalar multiplfing the expression for the coordinates of the oscillating system (1.36) 
written in the generating approximation by Us , we obtain (cf. (1.41)) 

<AT,), = 2 Gh (3.28) 

Function A now becomes a sum of the ternary, quadratic and linear form of 

~+.,cz, given by 

where hI denotes the part of A which is independent of at,.. ., a,,, (when A is 
computed according to (3.25) - (3.27)). 

In the present case each of the following two conditions is sufficient for the inte ral 
criterion to hold. First of these conditions is that nonpotential forces acting over #!e 
coordinates of the oscillating system are absent, 
forces in the oscillating s 

and the other is that the nonpotential 
stem are the viscous friction forces, while the generalized 

forces of the first kind de u-red on the quasicyclic coordinates satisfy the condition of T 
the component-wise phase-coupling. We should, however, note that in the latter case 
the componentsof the vector u, (the coordinate of the oscillating system) will not, 
generally speaking, be component-wise phase-coupled and the equality of (2.19) will 
be conditional on the symmetry of the matrix B (when ~,,,+r. . . . , q,, are component- 
wise phase-coupled, then (1.17) holds for any 8; ; see Sect. 1). 

Coefficients +,UD, arr etc. can be obtained without use of their representations in 
terms of the Fourier coefficients (3.15). We can e.g. adopt the following procedure. 
Let,us introduce the frequency-impulse matrix characteristic K (1) = w(lfi (r)~ , ;, i Ep 
= ,..,) k, of the oscillating system, defining it as follows 171. Let the oscillating 

system be acted upon by a single 2n /o-periodic load of the form f (1) uj. Then the 
law of variation of the f-th feedback parameter with time can be given by 
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where @) Is independent of j(t). This enables us to write (3.10) as 

(3.30) 

(3.3f) 

and the expression for (AT,),, as 

<ATdo = - 4$ (3.32) 

i,j=r 0 u 

The previous expressions are obtained from (3.31) and (3.32) by utilizing 

K(‘j) (f) = 2 2 kyj) co9 fvof - @j’) + k,@j) (3.33) 
v,v+O 

Systems with “purely attractive electromagnets” in the problem on oscillations of the 
current-carr ing conductors, correspond to the case discussed in Subsect. 2, Sect. 3. 
Describing x ese systems we can assume that, when the magnetic fluxes are given, then 

does not depend on the dis lacements withrn the object and is propor- 
e in me induction line ength outside the object, Oscillations caus- P 
attraction between two halves of a thin, ferroma 

a 
netic rorus separa- 

ted by narrow slits normal to the axis can serve as an example of sue a system. The 
field is generated by windings on the tore connected to the given emf. 

In the cases differing from those discussed in Subsect. 1 and 2, Sect, 3, equations 
obtained for the 

.P 
osition coordinates in the generating a 

P 
proximation are nonlinear and 

describe the oscr lations of a system acted upon by the orces depending on the dlspla- 
cements, time and the parameters ar, . . s 3 a,. The energe’tic criteria indicated above 
are particularly useful here for me following reasons. Let us suppose that we can find 
(e.g. by numerical integration) the functions Pm+ru* - . at Y~O when any a,, . . ., am 
are given. The usual procedure would consist of going cougar the values of Cr, in 
order to obtain approximate relationships Qm+so(t, art . . . , a,) or, of assigning some 
values to a, to find the functions qmtso and the values of pr, . . .,p,,, selecting those 
values of a, for which. P, s 0. With the function A available, we can go through the 
values of a, using well known methods of obtaining a minimum, and this shortens the 
computations considerably. 
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The present paper concerns the optimization of the trackin process (with allowance 
# for measurement errors) in a system whose motion is descrl ed by linear differential 

equations. It is shown that under certain assumptions the problem reduces to one of 
ordinary optimal control. Further analysis using the maximum principle enables us to 
reduce the initial problem to a system of transcendental equations. Examples illustra- 
tin 

J 
optimal tracking strategy in s ecific cases are discussed. 

roblems of optimal control in 5, e absence of complete information, i.e. with in- 
complete and inexact measurements or observations, are of reat interest in control 
engineering. Various approaches to optimal control and 8. trac rng problems with incom- 
plete information are considered, for example, in [I-a~, whose authors employ both 
probabilistic and minimax formulations, 

1. The lnftirl ferlatiou#, Let the state of a system at any instant be defined 
by an n-dimensional phase coordinate vector 2. The law of variation of 5 (t) takes 
the form of a determinate linear system of ordinary differential equations, 

dz / dt = A (l)t + b (t) (1.1) 

where A is an n X n matrix and b is an dimensional vector. System (1.1) can 
be regarded in many cases as a system in variations near the theoreticai (nominal) na- 
jectory of the initial nonlinear system. 

The motion of the system is considered over the time interval [to, 2’1; the phase 
coordinates of the system are observed (measured) at rhe fixed instants t,, 1,,. ..,trv = 

- 7’. Here tR <tR+r for k = O,l,...,N - 1. By “observation” ateach ins- 
tant of time t, we mean the approximate me~urement of certain linear combination 
of the components of the vector z (tk), i.e. measurement of the vector Qk 5 (t,,). 
Here Qk is a given rectangular matrix with Zk rows and .n columns. The integer 
ZR > 0 is the number of scalar parameters measured at the instant th, k = 0,i ,. 

-*> N. We assume that the error of each observation is a random I k-dimensional 
vector quantit)l distributed according to a normal law with zero mathematical expect- 
ation and a known correlation matrix Be. The term “correlation matrix” is used throu- 
ghout the present paper to refer to an unnormalized correlation matrix (a second-mom- 
ent matrix). The measurement error at a given instant is assumed to be independent of 
the errors at the other instants. 

Thus, the result of observation at the instant 1k is a random Zb -dimensional vec- 
tor quantity y& with a normal distribution law. Its mathematical expectation is equal 
;z 2 true value of Qrx (tr), and its In X I* correlation matrix is known and equal 

h* 


