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Differential properties of the solution can be studied by utilizing the resulis obtaiped.
Lemma 4, 3 assures an afproximate solution of (3. 10) according to theorems in [#] on
the convergence of the Galerkin method, and of other projection methods,
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We consider systems with quasicgclic coordinates and analyze the motions in which
velocities, impulses and position (but not quasicyclic) coordinates are periodic funct-
ions of time, We assume that the generalized forces corresponding to quasicyclic coor-
dinates either depend on time only, or are proportional to quasicyclic generalized co-
ordinates and that the latter are small.

We show that, when certain requirements are imposed on the nonpotential forces with
reference to the position coordinates in stable motions, then the quasicyclic impuises
assume (up to the small order terms) mean values yielding the minimum of some func=
tion A of these mean values. This function can be expressed in terms of the Routh’s
kinetic potential of the system, by the virial describing the forces acting upon the posi~
tion subsystem by the quasicyclic subsystem, etc. This in turn yields various versions
of the integral criterion of stability.

Applying this criterion to the case of the oscillations of linear current-canrying con-
ductors, we can relate mean periodic values of the magnetic fluxes to the extremal
conditions of the combination of the averaged values of the magnetic field energy,
magnetization energy and of the mechanical kinetic potential (or the virial of the pon-
deromotive forces).

The case when the Routh's equations are linear with respect to the position coordina=-
tes is considered separately, and we refer back to our previous papers on the problems
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on excitation of oscillations *¢] to anal¥ze the possibility of representing the condi=
tions of existence and stability in terms of the harmonic coefficients of action of an
oscillating system, and to give specific expressions for A.

We thus find that the systems in question constitute a second class of systems admitt-
ing the integral criterion, Earlier, Blekhman e.a, [$-¥] studied the systems of synchro=
nizable objects with weak constraints, Differences occurring between these two classes
are related to the form of the Lagrangian and of the generalized forces as well as to the
assumptions on smaliness, This leads to different formulations of the criterion, In par-
ticular, systems with quasicyclic coordinates, unlike the synchronizable systems, can
admit the integral criterion also when considerable dissipation occurs over the position
coordinates,

1, Pertodic motions i{n a system with quasicyclic coordinates (*)
and the integral criterion of stability, Leta system with holonomic
steady constrains be given described by m quasicyclic (gy,...,¢,y) 8nd 7 — m posi-

tion (§ma1s+++1qn) coordinates, and let the generalized forces corresponding to the
quasicyclic coorainates be of two kinds: (1) degendent on time only, or (2) proportional
to the quasicyclic generalized velocities, We shall limit ocurselves to the case when the

forces of the kind (1) are 2% / © periodic and the forces of the kind (2) are small,
Consider the motions in which all generalized velocities and impulses as well as the

position (but not quasicyclic) coordinates are 21 / @ periodic in time, Equations of
motion will then be

Pr +phig, = U.(t)+pf (r=1,...,m)
L-&_Lzom" (r==1,...,n~m) 1.1)

¥ ey Py

L=T(qmitse:sqn @1sever@n)— T (Gmery o o oy Gn)

where L is the kinetic potential of the system, Py (r = 1»-':»’”) denote quasicyclic
impulses, 0 is a small parameter and Qpu+r (@m+11++1@ny G 14424 ¢ n) are nonpoten-

tial generalized forces corresponding to the position coordinates,
The most interesting case occurs when "quasicyclic” generalized forces of the second

kind are the viscous friction forces and when ph, > 0. A more general case when these
forces are given in terms of a dissipative function of the form

1 m
== 3 haq (1.2)
r, =1

with a positive definite form in its right side can, obviously, be reduced to the previous
case by the linear substitution of the quasicyclic coordinates only.

For sufficiently small f, system (1.1) can have solutions of the type shown above,

and they will become solutions of the corresponding generating system when p = Q
only under the condition that

2R/
W)y =0, () =on S dt (1.3)

1]

*) Following [6}, ch.7, we shall call the coordinates quasicyclic, if they do not appear
in the expressions for the kinetic energy and generalized forces, and the corresponding
generalized forces are different from zero.
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which will, from now on, be assumed; f, in(1.1) can be assumed constant without
loss of generalit{.
If from the following linear algebraic equations in ¢’y (F = 1,...,m)

pr =0T [ dq, (1.4)
we find
qr. = gr(pl’ vo oy Pmy Amany oo oy Qny q;nm vy qn') (1.5)
and construct the Routh's kinetic potential
Ly =[T — (g =0 1,6
[ 2P0 |, (1.8)

then using (1.5) we replace ¢, in the expression for Qp4, . the equations of motion
can be written in the form

. aL
p—ph ot =U () Fufe =t1..um)

o — == Qmr  (F=1,...n—m) (1.7)

containing only the position coordinates, quasicyclic impulses and their derivatives.
For p = 0 we obtain from (1.7) a system of m equations in quasicyclic impulses

Po=U.(t) (=1...m (1.8)
admitting a family of 2x / o periodic solutions
Pro =0 4V, (t) (r=1,....m) (1.9)
with m arbiwary constants &y,...0p,. In (1,9) we have
vV, =U,, V) =0 (1.10)
We assume that the equations

=0 (r=1.....n—'m) (1'11)

for any a,,...,a,, belonging to some region, admit a stable 2%/ w- periodic isolated
solution (i.e. solution without any new constants)

Grim = Qremo (¢, Ogy v v vy Om) (r=1,....,n—m) (1-12)
Then the equations defining the parameters of the generating solution will be
oLg ~
Pp(ay,...,0p)=— —a—pr—)o—er=0 (r=1,....m) (1.13)

The mode corresponding to the solution &y = &;*,...,%m =0m* of (1.13) when B

is sufficiently small will be stable, if the roots A,,...A,, o©f the equation
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detl( L ) +ax,8,, l 0 (1.14)

have real parts whxch are negative when p >> 0'and positive when p <<0. We
assume that o,*,...,0," belong to the domain of existence of (1.12),

In (1.13), (1.14) and further, the subscript zero will denote the substimution Pr =
= Droy 4r+m = Jremos the asterisk - the substitution O =&%,....0m =0%n;

e = lby #, =1/ by, and §,, will denote the Kronecker delta,
Next we shall find the conditions for

P, =*—-" [(LR>0 + 2 er“r] {fr=1,...,m) (1.15)
Fan}
to hold, Integrating by parts, we obtain
op, > a; +— (LR + Z <[ T oy aqm”L \ (1.16)
From (1. 7) it follows that (1.15) hold when
aqmao
2 <Qm+-o =0  (r=1,...,m) (1.17)

Equations (1, 17) imply that the mawix [|3P, / ¢t || is symmerwic. Let us limit
ousselves to the case when the quasicyclic generalized forces of the second kind are
the viscous friction forces, assuming also that p>>0 and b, > 0 (r = 1,..,m)

We shall, in addition, use the following fact,

Let the ¥ X N matrices A and B be symmetric and let B be positive definite.
Letalso A < A < ... K AN and A" A < ... AN’ be the roots of the equa-
tions {4 — AE] =0 and |4 — A,'B] == ( respectively, where E is a unit
N x N mamix. Then A; and } ‘ have the same sign.

Since all %,> 0, we manix dlag (x,,.. Km) is positive definite and, when
| P, | da, || is symmetric, the stability will depend on the signs of the roots
1’ serns kg’ Of the equation

det[(9P,/8a,), + M8, =0 (1.18)

Moreover, the point {&,*,...,,*) will be a stationary point of the function

m

A, ..., %m) =—(Lpdo— D) €% (1.19)

re=]

therefore the mode corresponding to the values @; =&,*,,..,0y, =a,* will be sta-
ble, if the above-mentioned point is a minimum,

The latter statement forms a basis for the integral criterion of stability for the class
of systems under consideration. The criterion will cerwinly hold, if all generalized
forces written in terms of the position coordinates are potential forces. It is neverthe-
less tue, that the integral criterion may hold also when nonpotential generalized forces
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Qmas are present,
Let e.g. Q¢ De expressed as linear forms of the position*velocities

n—m

Qmse= Z L - (=1, n—m) (1.20)

ra=]

and gmase be represented by series of the form

Tmes (B Q1p 0oy @)= 2 qmm @1, o0y &) €08 (VO — @) (t.21)
v

where the phase shifts @, of the harmonic components of gp, .4 are independent of
@g,y + + +y Oy and are identical for all gpageee + o0 Gnoe Then

n—m aqm"» n—mn—m
S} O S 2SS b, Sivartin X
(owe1 r ) el v
F
X sin (vot — @,)2 q{;;"‘“ cos (vt — tpv)>= 0 r=4%..,n—m} (1.22)
v r

When all components in the Fourier expansion of a function exhibit the same phase
shift, we shall say that this function is component-wise phase~coupled and we shall
call the conditions that me.;o(")= . -==v.,."’ = @, - the conditions of the component-
wise phase-coupling, We can now say that the sufficient condition for the integral
criterion to exist when Omss are linear forms of Qmasls» » oy gn° Is, that the phase

shifts in the expansions of the position coordinates computed for the generating approxi-
mation are independent of the parameters of the generating solution and that these
coordinates satisfy the condition of the component-wise phase coupling. Since no con-

straints of any sort are imposed on the properties of the matrix |[b,,|l, it follows that the
integral criterion exists in the case when Qm.s represent the viscous friction forces,
The case which we have just discussed has no analog in the problems onsynchroniza-
tion, since in the latter case @y, ..., @, represent the phase shifts of the object coor-
dinates {*%] , expressions o¢-a,, and Pmare’” appearing in the solutions most cert=
ainly depend on @, ..., Gy, and the integral criterion is possible only in the absence

of dissipation in the supporting (oscillating) system [#°3),
The equation

LR=T3‘—'H’—'T1=L“"’T1 (1.23)

where Ty and, Ty are given by

T=T+Ty+U (1.24)
m
1 _—
T1=’T 2 Anr 90y
¥, 8=x}
T ] 1 "im A * . ot . .
&< 7 mir mesQmerQmse, U = 2 Z Aemasqr Qmes
7, ] ram] gwm}

enables us to obtain A in a more definite form
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A =(T1do—<{Lyde— 24, A“—-‘*‘%‘—Z &0, (1.25)
r=1

which will be preserved in the case when the left parts in (1.17) are equal to b,, and
are independent of @1,...,Om. At the same time e, in(1.25) should be replaced with
e, — b, (see Sect, 3).

Two remarks which follow refer to the practical applications in connection with the

problems on excitation of mechanical oscillations,
The generating approximation and the formulation of the integral criterion are not

affected by the addition of any terms of the form W () to the first m equations of
(1.1) and of any terms of the order | to the remaining n — nr equations, The form
of (Lgpde as a function of @j,...,&p, remains the same even when new degrees of free-

dom appear corresponding to the group of coordinates ¢nyis++-+@n,t such that the exp=-
ression for the kinetic energy becomes

T‘:"'T1+T’+U+Ttv TazTg(QMh---vQMl,91;41’”-'97:\»1)

o m n-m
Tl =" Z Arxnr.ns“ U= 2 E Am+gnr.Qr;+. (126)
r, 8=1 Ir=1[s=1

Coefficients of the forms T, and U depend only on 9ms+1:++»dn and T,is given
in (1.24)

1
b =g, + 2 WriQn+i (wpg == const) (1.27)

(23

We assume that the generalized forces in @n.y,..-»@n4t are independent of the rem=
aining generalized coordinates and velocities and that the forces are 2n /  periodic in
time, which appears in the formulas explicitly,

To clarify the form of the corresponding Routh's equations, we shall write the kinetic
energy as

T =T\ 4 Uy + T4, +UN 4 Uy 4+ Ty + T, (1.28)
where
. l m m n--m
W =5 2 4,49, =" 2 Ar, mieqr Imis
rs=1 r=1 8=
m m f-—-m
U1*= 2 Ap‘q;q;o; U‘ = 2 2 Ar, m#lq;.qn"u‘l
r, s=1 r=1 s=}
1 m
Tye=— 2 Andidin Gra=0—08 (=1,...m) (1.29)
r, $==}
We have

% =&, (r—1,...,m) (1.3v)

where g, are functions of Piseees Pmy @motsees@ns @ mesrersd n, are given by (1.5).
The form of g _remains the same as that for the system without additional coordinates,
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Routh’s kinetic potential will be given by

Lg =—T\W 4T, 4+ U, 4T 4+T,—1 (1.31)

Performing the substitution according to (1.30) for ¢ (r =1,...,m) in T, and
using the identity

m m p—m m
Z Arogaqr. + Z g} Armﬂq;.qr;n = 2 p,q;. (1.32)
r, =1 r=1 s=£1 r=1
we obtain
m
Lp = L(R?) + Z prq;. + T. (1-33)
r=1

where L(%g is the Routh's kinetic potential for the system without additional coordi~
nates. We therefore see that generating equations for Pj,..«yPm and dm+1r ++«1qn
obtained from (1,7) have the same form and the same solutions as those for the system
w.i{llul))ut additional coordinates, Equations corresponding to the additional coordinates
will be

m
—d— L _— oT, —_ . 4
dt 9t 9904t r§ Wnpr + Q’““ (=121 (1.34)

(these equations could have been written down at once as the Lagrange s equations),
System (1.34) contains no @,...;®m in its generating approximation. We assume
that when the substitution p°, = U, is performed, then the system will admit an
isolated stable solution in which ¢ 'p,10,...,¢ n+t0 3¢ 2%/ @ periodic functions of
time. Then the equations defining ¢ ,,,.,a, and the conditions of stability will
differ from those occurring in the system without additonal coordinates only in the
values of e, which will become

!
er. =€, + 2} Wy <Qn.+(o) (135)
i=1

Although T, isa siEn definite form of quasicyclic and supplementary velocities
only, the above remark has a definite physical sense (see Sect. 2).

The above results can be extended to rotational motions when gp.s = ot + 2x f ®-
periodic function for certain position coordinates. At the same time, functions
T, 11 and Qp4s should be 2n/w- periodic in the corresponding gp s OF contain only
their differences gmir — gmse-

Let us also consider the case when L, corresponds to a linear system. Then Routh’s
equations over the position coordinates will be

Mu"+Cu= Q + F, == (1.36)

where # = (Qme1se-1q@n)y Q = (Qms1se-- Qn) i M and C are symmemic
{(n — m) x (n — m) mawices with constant components, Denoting the scalar pro-

ducts by brackets, we obtain
L, =1y (Mu', u) —*,(Cu, u) (1.37)
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Let us scalar muluply both parts of the equa tion (1, 36) written in its generating

approximation by i, / @a. and average the result over one period. Assuming that
(1.17) holds, we obtain

(w2 + (0w D =(Fo 7)) 3

On the other hand, differentiating both parts of the same equation with respect to
@,, scalar multiplying the result by #, and averaging, we find

0 oy + (€ 55 w> = (i >+ (5 )> 439

Since the matrices M and C are symmeric, integration by parts of the first terms
of (1.38) and (1. 39) yields

(o "’“°)> 2@, w)> + (32 va)>—

= due
o aa'r <L'>o - \(Fo’ oa, )> (1.40)
from which we obtain
a3
75 Iado =1 55 (W, + WF) (1.41)

where Wgq and Wp are the virials of the nonpotential forces corresponding to other

positon coordinates and of the forces of action of the "quasicyclic subsystem™” on the
“position" (oscillating) subsystem. These virials are defined by

Wo = —((Q, w)), Wp =— ((F, u)) (1.42)

Relations (1.41) enahle us to eliminate,in the given case , (LD, from the expression

for A

A=(T)o— "3, —1Wp,—24 (1.43)

If Qm+l)°"! Qn are linear forms of q.m+lv°-'!q‘n and ano,.---:Qno are component-
wise phase-coupled and phase independent of a,,...,0t,, , then Wy =0, (.17
holds and

A =(T1>o—Wp,—24 (1.44)

Equations Wq, = 0 and(1.17) hold in certain other cases (see Sect. 3). Repre-

sentations of A in the form (1.44) which are possible in the problems on the excitation
of oscillations, yield the following, Let u and ¢1s--++dm be coordinates of the oscilla-
ting system and of the exciters [1, 2].In(1,24) we have

Tl = Tl (§) q.lv"'vq.m): U=U (gv §.1 q.h-":q.m)
§=(§lv‘°-1§k)v §i=(u, Vj) ([=i,...,k) (1.45)
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where &1,-.,Ea are the feedback parameters [1,%] and v; are comstant (n — m) -
vectors, The form of T'; and U does not depend on the form of the oscillatory system

['] (i.e. on the number of its degrees of freedom, on the manner of introduction of the
coordinates U etc. ; these factors only define the form of ;). This gives

k
d ar aT .
F= (& — %) T=Tu&E pu.pw)

k
/ d 8T aT
W=~ Z_,: (W % _%L) &> (1.46)

Consequently, when A is defined by (1.44), the form of the averaged functions of
§, &, and p,,..,p, Will not depend on the form of the oscillating system.

2. Energy relations for the case of oscillation of the current-
carrying conductors, Leta solid body system be given, incorporating m linear
conductors to which known external 25 / o - periodic emf's are applied. We shall con-
sider the case when the electric field energy outside the conductors can be neglected
and the magnetic field can be assumed quasi-stationary [?] within the range of frequen-
cies given by ©,..., v 0, where v, is sufficiently large, (In general, the arguments
which follow are valid only to within the high frequency "tails" of the functions to be
determined, beginning with some harmonic frequency v, -+ 1. This is connected with
the fact that the dynamic effects in the material are neglected e,a.). We assume that
the relationship between B and H in the material is linear and that the resistances
of the conductors are small compared with the inductive reactances at the frequency

w,
Since B and H are connected linearly, we can describe the system in terms of
Lagrangian equations, supplementing the kinetic energy with the part of the total free
energy depending on the currents (magnetic field energy) W

! p
W='2— 2 Ln.iril (21)

r, 1=1

Here Lo* =L.* (qmsgseerqn) and L,s* =L.s* (@m+r--+19n) are coeffi-
cients of the self- and the mutual induction, {, =g¢q, (r =1,...,m) denote the
currents in the conductors and 4m+1s:-+1@n are the mechanical generalized coordina~

tes. Coordinates (charges) 9r are quasicyclic.
Equations of motion will be

D, + pRply = U, (2) + pfr (remg, ..., m)

d L, oL, .
-;;‘a—q-"'”—'—m—er‘i- Fomye  (r=1,...,n—m) (2.2)
where
Fop = 22— W (i i
™ Y mer Loeeos b Quyge v oy 4,) (2.3)

are the ponderomotive forces and
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Q. = a Wi .
f—"&;" (‘lyc-oa‘mqu!.-o.,qn) (2.4)

denote the fluxes of magnetic induction across the conductors.

In(2.2), pH, denote the resistances of the conductors; U/ , and B {r the alterna-
ting and direct components of the applied emf, respectively, (the latter should be small
so that no curtents § == O (1 /) are present in the stationary mode).

Parameters ay,...,0t, of the generating solution here play the part of the direct
components of magnetic fluxes computed with the accuracy of up to the small terms

Op=0+V:(t) (r=t1,...,m (2.9)
The quantity m
- _ I
24 = Zj €%, & =g (2.6)

in this case, is the energy of magnetization and has the following sense, Let all

U, =0 and leta constant flux o, pass through the 7-th circuit. Then the current
in the 7r-th circuit will be given by i, = ¢, and the energy of this system of const-
ant currents (magnetization currents) in the given field, will be equal to 2A (the
field is assumed external to the currents, see [?], ch, 1V, Sect, 32, 32,14),

Relation (1,25) enables us to formulate the following statement. If nonpotendal
mechanical forces are absent from the system or, if these forces satisfy (1.17), then
when a stable periodic motion (*) occurs, the direct components of magnetic fluxes
(with the accuracy of up to the small terms) will have such values that the function of
these components will be a minimum, its value equal to the mean (over one period)
value of the magnetic field energy, less the mean (over one period) value of the mecha-
nical kinetic potential and the energy of magnetization.

In the case when L, corresponds to a linear oscillating system, the mechanical

kinetic potential in the integral criterion can be replaced (in accordance with (1,43))
with the haif-sum of the virials of the nonpotential mechanical and ponderomotive
forces,

We shall, in addition, assume that other linear conductors are situated near the ones
under consideration in such 2 manner than when a line of magnetic induction envelops
a "primary" conductor, then it must envelop the whole group of secondary conductors
situated near the "primary”. We assume that the resistances of the secondary conduct-

ors are not small (otherwise the currents would be i = O (1 /p)). Then the charges
carried across the secondary conductors will play the part of the additional coordinates
in accordance with Sect, 1, and the quantities 7, will be given by

3
r
. =49, + 2 wﬁQ,‘"’ (2.7)

j=1

*) More accurately - a motion existing at.sufficiently small u and described by a
solution which becomes the corresponding solution of the generating system when

p= 0 ; moreover, the currents and displacements are periodic in these motions, the
charges are not,
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where I, is the number of the secondary conductors situated near the r-th primary,

L + ...+ Im=1, ¢ is the charge which has passed the plane of cross section of

the j-th conductor of the r-th group and w,; are rational numbers defined as follows,
Let the circuit of the 7~th primary conductor pass along a certain line n,") times, and
the circuit of the )(")-th conductor pass n,") times. Then w,; = n,;® [ n," (in
practice n® denotes the number of turns),

The effect exerted by these secondary conductors on the motion of the system does
not depend on the manner of connections made between these conductors, nor on the
emf applied, nor on the character of other electrical components included in the net-
work (such as coils, condensers, rectifiers, e.a.). It is indicated in terms of e,* only,

the latter replacing e, in(2.6)

"’
&% = ¢ + P wr i, 51— (¢), (2.8)

j=1

Since lines of induction enveloping the primary conductor and not the secondary cnes
always exist, the above argument is valid only under the condition that the "difference”

can be described using terms of the order of p in the expression for W. Then, additio-

nal terms of the form B { ) will appear in the first m equations of (2, 2) for the mecha~
nical coordinates, and they will not alter the generating solution,

3, Routh's equations linear in position coordinates, Evenif L,
corresponds to a linear system, equations defining the position coordinates in the gene-
rating approximation will, generally speaking, be still nonlinear, since the forces F
depend on the position coordinates. Two cases, however, exist in which linear equa-~
tions are obtained, When the constraints are stationary, the Routh's function

R = Ly + Hhas the following stucture

¢ n—m . L.
R = 5 2 (Amirmes + Ninirmes) N o

T, sunl
—m m ’ m
+ 2 2 Nm«rup‘q;m_,. -5 2 A(")prp. (3.1)
real gl r.8=1
(14 = fl4.d™)
and the forces of action of the quasicyclic system on the position system will be
d n—m i "—ma
. . maimes o .
Fppp = — 9 E‘ Nnu»rmnqm” + _2‘,"“:1 m Dniiimes —
m  n-m m m
. Ny yre N g ris ) D . i Y
— _— —_SN — 94
3}1 b, ‘é qmu( Odmat Blmmer 8%‘ mersDy — % {;_}_4 mer pp,
(r=1,...,n—m) (3,2)

Since our aim is to obtain linear equations for the position coordinates in the genera=
ting approximation, we shall assume that nonpotential forces written in terms of the

position coordinates are linear forms of ¢’y ,q,..., ¢'n With comstant coefficients,
From (3.2) it follows that two cases are possible,
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1. Quasiharmonic generating system. Quasiharmonic equations (i.e.
linear equations with periodic coefficients) are obtained if Ny, rm,; = coOnst (r, s =
= 1,... 2 —m), Ny, o (r =1,....:n — m; s =1,...,m) are sums of const~
ant quantities and linear forms; A™) (r, s = 1,...,m) are sums of constant quant-
ties and linear and quadratic forms of the position coordinates. Constant terms in A (")
do not affect the form of F,, and the second term in the right side of (3, 2) vanishes,
System of the generating equations will be inhomogeneous if at least one of the follo-
wing conditions holds: (a) N,,,,, have constant terms or (b) A("® have linear terms,
Ifall Np,,,, are linear forms and 4™ have the form: constant plus quadratic form,

the system will be homogeneous.
At this point we shall turn our attention to one particular case. Let the products of
the quasicyclic and position velocities be absent from the expression for kinetic energy

(U=0). Then all N, ., = 0, and Npyrmss = 0. Let, in addition, 4"* contain no
linear terms. Decomposing T, into the energy of the quasicyclic subsystem with T*
restrained, and the "additional energy” AT,

1 o ¢ >
T'=T1*+AT), Th*=v Z A PPy ATy =% 2 AA(")p,,p. 3.3)

£, 8==1 r, s=t
where AA4(™ are quadratic forms in Gm4r,» We obtain

Y, Wp = AT, (3.4)

Function A will, at the same time, have the form

A=+(T1*50— 1Yy WQ,— 24 3.5)

If, in addition, Wgo = 0, then A will assume the form which it has when ¢m4y, - .« .,

4n =0, i.e. when the position subsystem is restained, Consequently, in this case
the position subsystem does not (within the accuracy of up to the small terms) influ-
ence the motion of the quasicyclic subsystem; the motions of the position subsystem,
however, are substantially dependent on the quasicyclic subsystem. Applying this to
the problems on excitation of oscillations we see that it means that the feedback act-
ion of the oscillation on the exciter is insignificant desdpiue the presence of a family of
the generating solutions and the fact that small terms depending on the position coor-
dinates are substantial,

If 7,* = 0 and at least one f, = 0, then no solutions of the type discussed above
exist, If, on the other hand, all f» = 0, then we arrive at the singalar case of the
method of small parameters (P = 0) in which terms of the order of u? must be taken
into account in the required solutions.

2. Generating system with constant coefficients. Equations with

constant coefficients are obtained if Np,,o=const,Np, .., =const, and A"®

are linear forms of the position coordinates. In this case position coordinates in the
Feneratin approximation are defined from the solution of the problems on forced osci-
lations of a linear system acted upon by the forces which can be expressed in terms of

some known functions of time and of the parameters a,,...,&,,.

This system, however, will differ from the initial oscillating system (with the kine=-
tic potential L,) because of the terms Npyyrm+s9m +"» Action of the quasicyclic sub-
system on the position subsystem, within the accuracy of up to small terms, thus consists
of the following: firstly, itis responsible for 21/ w- periodic driving force, and secondly,
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it modifies the masses of the oscillating system. Rigid constraints however are not alt-
ered and the gyroscopic forces do not appear.
The most interesting case in the problems on the excitation of mechanical oscillat-

ions is that which occurs when U = 0  We then have in the generating approximation,
the problem on the forced oscillations of the initial oscillating system. [t at'the same
time we can write the expression for Iy so that it contains the feedback parameters
(i.e. in the form invariant with respect to the type of the oscillating system [!.3]), then
equations defining the parameters of the generating solution and the conditions of sta-
bility, can be written so that they contain harmonic coefficients of action of the osci-
llating system as parameters. If this holds for some exciter, then the oscillations cau-
sed by this exciter in any linear mechanical system will be fully defined if the coeffi-
cients of action for this system are found and the relations shown above utilized, Be-

low we shall determine the form of P, and A for such cases,
Expression for the Routh's kinetic potential will be (*)

m k
Lp=Ls—+ 2 A5+ 3 4% pp, = Ls— T1* — AT, [(3.6)
2

r,s=1 i=1

and the corresponding expression for the driving forces,

Lk m
F =) F;, Fy=—=% 2 A4;"p p] (3.7
j=1

Notations in (3.6) and (3. 7) correspond to those of (1.45) and (1.46); the number &

of the feedback parameters and the coefficients of 4(rs) and A A 5 follow from the
properties of the exciter only.
Driving forces computed in the generating approximation will be functions of the

garameters @1y, of the generating solution and of time only. They are obtained
y inserting (1.9) into (3. 7)

m
Fo=—1 3 84/ @a, + 2%V, + V,V)) (3.8)

r, =1

Let us now bring into consideration, in accordance with [1,2] , harmonic coefficients
of the action of the oscillating system k,(#)and the phase shifts ¥o(#) which are det-

ermined in the following manner.
Let the oscillating system be acted upon by a single given load of the form v,cosval.

We shall define the resulting pure forced (2% / vo-periodic) oscillations and find the
laws governing the behavior of the feedback parameters over a period of time, We

denote their amplitudes and phase shifts relative to the load by k(). and P, | res-
pectively, in accordance with

= kS cos (vot — P,49) G=1,...,% 3.9)

*) In a number of cases the form of L, differs from that assumed by the small terms

responsible for insignificant additions of the order of w to the equations of motion of
the oscillating system. Moreover, the term under the summation sign in (3, 6) should
represent a positive definite form of quasicyclic impulses, This leads to the necessity

of imposing constraints on  §; , of the form A;<E; <A, which, in most cases, are
obvious from the physical sense of a given problem.
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This enables us to obtain in the generating approximation the feedback parameters
as functions of time and of Gy,..., Gp . as well as of k,(4) and ('

k m
o==72 [ 3 A4k (aa,+ V) +

tm) 7, st (3.10)
+2 ) kKM S A4 eV, cos (vot — By, — :p.“”)] 8 Gty k)
v, voho Ty 8l

Notation employed corresponds to the equations

Vy= 2} Vi cos(vot— B,,) (3.11)
v, V30
' k g ] m
gjn(l) =—x 2 2 k‘(il) 2 A A{("’)yﬂ(‘) cos (Vmi— 9"0),__,‘,'6»)
==l v, vako r, 8=l s
V.V, =V, 24 3 V.2 cos(vot — 8,,") (3.12)
v, vy 50

and " denotes the parts of , independent of Gy,...,Qm and such that

CEp™ ) =0.
Substituting t Jo from (3. 10) into

m 4
0y = 2 [A7+ 2 A4%) P (3.13)
s=1 i=t

and averaging, we obtain the following algebraic equations defining the parameters
of the generating solution

m m
Pr(au ceay am) = 2 gy Xy ey + 2 Q0 — C, = 0 (r=4,.. . m) (3.14)

2, U, Vex] "Fl
where
1 < ; m X
Srmo="—7 2 AAIA4 kD, e =er— 2 ) AT BV,
t, =1 Y
m i x ?
Qry = AD* + . E armoVuvm -7 2 2} Z A\A,""’AA{“” x (3.15)
u, v=l {, juml ti, D=l v, voho

X Vi V"kv(‘li) oS (Oyy — B¢y — \va))

We assume that the nonpotential forces in the coordinates of the oscillating system
are the viscous friction forces. To find the condition of existence of the integral cri-
terion, we shall construct the following derivatives:

”»
3;:: = 2 (anuv -+ Crus + anwn) Ky ey + G,y (3~16)

U, Vo=l
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Using the reciprocity relationships of the static action coefficients k(') = ko(i"
and the obvious equalities AA4,;r*) = AA,*? we can show that the coefficients
Qrsyy temain unaltered if the extreme or middle indices are interchanged and also if
in the first and second pairs, the indices are simultaneously rearranged: @ruyp = Gpyyr =

=rysp = alrm = ... For example,
x
Brpup = — 7 2 AA (rv)AA (m)k (1) __ Z A Aj‘"‘) A A‘"")ko""’ = you
‘ d= ‘rj=l

(3.47)

Thus the sum in (3. 16) is not affected by the interchange of r and 8. The same pro-
perty is possessed by the first two terms in the expression for @,, (3,15). For the last
term, using the reciprocity properties k(9 = k% and () = $,0" and rearran-
ging the indices i, j and u, p in the appropriate manner, we obtain

8y — Oy =— 2‘, 2 N AAIAALWV, x

i. =14, v==l v, v740
x Vo, [cos (Byy — Oy — $,7) — cos (Bps— Fus—P ) (r, s =1, ..., m) (3.18)

so that @py = 8y, if ﬁu’ =0y (@ v= 1,...,m). Consequently 3P,,‘6a. =
= 9P,/ 0a, and P, = A /de, in the case when the generalized forces of the

first kind are component-wise phase-coupled in the quasicyclic coordinates.
The same condition ensures the following equalities

<’:g,: Omiso aq;::so> = <—<Buo'. %&) = b, (r=1,....m) (3.19)

Here the symmetic (n — m) X (n — m)mauix B characterizes the friction in
the oscillating system and -b, is independent of G1y..ey Om.
Indeed, in this case the driving forces

k m
_._;_ Z‘,‘ 3 1 AAL [a,.a,—}— 2a, 2?}‘0 V.. x cos (vat— 9,) +V,V,] v; (3.20)
j=1r, t== v, v

generate oscillations of the form

= 2 u'Y cos (vot — B,) + uly sin (vat — 9,) + u,, rax xax (3.21)

where @, and uf"), are independent of ay,...,0tp, and u(®, is a linear form of .
From this, using (3, 19), we obtain

(o) =

with B symmenic mawix, integration by parts yields
Woo = (—(Bu’y, uo)> = {(Bu'y, #g)> =0 (3.23)
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The linearity of AT, in §; yields the following relation between the virial of the
driving forces and the additional energy of the exciters:
We, = (AT1)o (3.24)

and the function A can therefore be written as (see 1,43))

A =(Ty* 3% +Ys (ATydg—24, A= Darle—b)  (3.25)
Pa |

A= <T1>o - l/l <AT1>0 —24 (3'26)

Two above relations together with the most general representation of A in terms of
the averaged Routh's kinetic potential

A =(T1do— (Lydo — 24 (3.27)

yield three formulations of the integral criterion of stability, and two out of four follo-
wing functions, namely Ty, T',*, ‘AT, and L,. are used in each formulation,

Scalar multiplying the expression for the coordinates of the oscillating system (1. 36)
written in the generating approximation by %, , we obtain (cf. (1.41))

(ATy)y =2 <La>o (328)

Function A now becomes a sum of the ternary, quadratic and linear form of
Oyy..eyOm BiVEN by

m m m
1 1 \!
A=F 2 Onudsdt g D en%a, — 2ea + Ay (3.29)
r,s, u,o=1 r, 8=}l res
where A; denotes the part of A which is independent of @,,..., Oy, (when A is

computed according to (3,25) - (3.27)).

In the present case each of the following two conditions is sufficient for the integral
criterion to hold, First of these conditions is that nonpotential forces acting over the
coordinates of the oscillating system are absent, and the other is that the nonpotential
forces in the oscillating system are the viscous friction forces, while the generalized
forces of the first kind defined on the quasicyclic coordinates satisfy the condition of
the component-wise phase-coupling. We should, however, note that in the latter case

the componentsof the vector u, (the coordinate of the oscillating system) will not,
generally speaking, be component-wise phase-coupled and the equality of (2.19) will

be conditional on the symmeuy of the mawix B (when ¢4, . . ., g are component-
wise phase-coupled, then (1.17) holds for any B; ; see Sect., 1),

Coefficients apgup, 8y, €tc. tan be obtained without use of their representations in
terms of the Fourier coefficients (3.15). We can e.g. adopt the following procedure,
Let us introduce the frequency-impulse matrix characteristic § (5) = Jx“? (1)), ¢, =
=1, ..., k, of the oscillating system, defining it as follows [7]. Let the oscillating
system be acted upon by a single 2r /e-periodic load of the form f(¢) vj. Then the
law of variation of the {-th feedback parameter with time can be given by
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2nle
(P 0=s | KM a—9/@ e (3.30)
1]

where KU s independent of # (). This enables us to write (3.10) as

N!E:

k o2n/w
5}'0 =% 2 S KGY {t—1) F;o (r)dr (3.31)
i=1 ¢

and the expression for ¢AT,5, as

w? kK °2nlwgnle =
ATyo=—1=5 D S S Py (0 KO (¢ — ) F oo () dv dt (3.32)
{t j=1 0 v

The previous expressions are obtained from (3. 31) and (3, 32) by utilizing

kUi (=2 2 kf'i)') cos (vt — \P‘;ﬁ)) + ko(ij) (3.33)

vyve0

Systems with "purely attractive electromagnets” in the problem on oscillations of the
current-carging conductors, correspond to the case discussed in Subsect, 2, Sect. 3.
Describing these systems we can assume that, when the magnetic fluxes are given, then
the field energy does not depend on the displacement within the object and is propor-
tional to the c%an e in the induction line length outside the object, Oscillations caus-
ed by the forces of atraction between two halves of a thin, ferromagnetic torus separa=-
ted by narrow slits normal to the axis can serve as an example of such a system, The
field is generated by windings on the tore connected to the given emf,

In the cases differing from those discussed in Subsect. 1 and 2, Sect, 3, equations
obtained for the position coordinates in the generating approximation are nonlinear and
describe the oscillations of a system acted upon by the forces depending on the displa-
cements, time and the parameters @, + - ., @, The energetic criteria indicated above
are particularly useful here for the following reasons. Let'us suppose that we can find

(e.g. by numerical integration) the functions ¢msws -+ +» ¢no Whenany a,, ..., On
are given. The usual procedure would consist of going through the values of @, in
order to obtain approximate relationships ¢m+self, @1, « - ., @) Or, of assigning some
values 10 @, to find the functions ¢m.se and the values of Pi,...,P,, selecting those
values of a, for which. P, = 0. With the function A available, we can go through the
values of @, using well known methods of obtaining a minimum, and this shortens the
computations considerably.
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ON OPTIMIZATION OF THE TRACKING PROCESS
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The present paper concerns the optimization of the tracking process (with allowance
for measurement errors) in a systern whose motion is described by linear differential
equations, Itis shown that under certain assumptions the problem reduces to one of
ordinary optimal control, Further analysis using the maximum principle enables us to
reduce the initial problem to a system of ranscendental equations, Examples illustra-
tinfg optimal tracking strategy in s&eciﬁc cases are discussed.

roblems of optimal contrel in the absence of complete information, i.e, with in-
complete and inexact measurements or observations, are of great interest in control
engineering. Various approaches to optimal control and wacking problems with incom-
plete information are considered, for example, in [1-3] whose authors employ both
probabilistic and minimax formulations,

1, The Initial relations, Let the state of a system at any instant be defined
by an  n-dimensional phase coordinate vector z. The law of variation of Z (¢) takes
the form of a determinate linear system of ordinary differential equations,

dr/dt =4 ()z 4 b (1) (.1)

where 4 isan n X n mauix and $ is an dimensional vector, Systemn (1,1) can
be regarded in many cases as a system in variations near the theoretical (nominal) wa-
jectory of the initial nonlinear system,

The motion of the system is considéred over the time interval [z, T the phase

coordinates of the system are observed (measured) at the fixed instants Loy LiseeesiN =
= T'. Here t; <tp, for k = 04,....N — 1. By "observation” at each ins-
tant of time £, we mean the approximate measurement of certain linear combinations
of the components of the vector z (f,), i.e. measurement of the vector Q@ z (¢,).
Here @y is a given rectangular mawix with I, rows and 1 columns. The integer
Iy > 0 is the number of scalar parameters measured at the instant Z,, & = 0,1,.
..,V. We assume that the error of each observation is a random  [,~dimensional
vector quantity distributed according to a normal law with zero mathematical expect-
ation and a known correlation matrix By, The term “correlation matix” is used throu~

ghout the present paper to refer to an unnormalized correlation mawix (a second-mom-
ent matrix). The measurement error at a given instant is assumed to be independent of
the errors at the other instants,

Thus, the result of observation at the instant £, is a random I, -dimensional vec~
tor quantity y, with a normal distribution law. Its mathematical expectation is equal

to the true value of Q,x (ty), and i I, X I, correlation mawix is known and equal
to Bg.



